四川省卫生健康委员会 主管

四川省疾病预防控制中心 主办

今日是 2019年01月1日 星期一
在线办公系统Office Online
数据库收录及奖项Database & Awards

· 美国化学文摘(CA)收录期刊

· 中国核心期刊(遴选)数据库收录

· 中文科技期刊数据库全文收录

· 中国学术期刊综合评价数库(CAJCED)统计源期刊

· 中国期刊网、中国学术期刊(光盘版)收录

· 万方数据系统中国数字化期刊群全文上网

· 中华预防医学会2017-2018年度期刊质量进步奖

· 中华预防医学会“优秀编辑质量奖”

· 《CAJ-CD规范》优秀期刊

· 首届《CAJ-CD规范》执行优秀奖

当前位置:
灰色系统模型在四川省法定传染病发病率趋势预测中的应用

刘蜀坤1,周亚林2,梁洁1,杨练1,袁艳平1


[摘要] 目的 应用灰色系统模型 ( 1,1) 预测四川省法定传染病发病趋势,对达到模型精度1 级和 2 级的外推预测 2015-2017 年发病率。方法 基于 2005-2014 年资料完整的 34 种法定传染病的报告发病率原始数据,运用 MATLAB 6. 1 软件,建立灰色系统模型 ( 1,1) ,拟合运算后,利用后验差检验法对模型进行精度检验,符合精度要求的传染 病模型预测 2015-2017 年的发病率。并将四川省传染病发病率实际值与预测值做比较。结果 模型精度等级为1 级和 2 级的共 18 种。外推发现,除艾滋病、HIV 感染、丙肝和戊肝流行趋势上升外,其余 14 种传染病的发病率均呈下降 趋势。将 2015 年预测值与四川省传染病发病率实际值对比发现包括肺结核、HIV 病毒感染、病毒性肝炎及其分型等 主要传染病的一致性好。结论 灰色模型适用于流行因素稳定传染病的短期预测和 “小样本,贫信息”数据的分析, 对建模序列进行预处理,同时结合定性分析能增加预测的准确度,能为制定传染病防控措施提供理论依据。 

[关键词] 法定传染病; 灰色系统模型; 预测; 发病率 

[中图分类号] R181. 2 [文献标识码] A [文章编号] 1672-2116 ( 2018) 04-177-05

基金项目:1 中国博士后基金第 60 批面上项目 “构建剖宫 产术后再次妊娠风险评估的方法体系和预警 模型”(                      项目编号: 2016M602699) 

                 2 四川省社会科学研究 “十三五”规划 2016 年 度课题 “社会福利最大化视角下公立医院医 疗服务                      定价理论模型与实证研究”( 项目编 号: SC16B029) 

作者单位:1 成都中医药大学公共卫生学院 ( 成都 611137) 

                 2 重庆市长寿区疾病预防控制中心 ( 重庆 401220) 

作者简介:刘蜀坤 ( 1984-) ,女,博士,讲师,环境卫生 学,E-mail: lsklsk_888@ 163. com 

通信作者:袁艳平 ( 1985-) ,女,博士,讲师,医药产业研 究,E-mail: 283129670@ qq. com


Application of Grey Model ( 1,1) in the Prediction of the Incidence of Notifiable Diseases in Sichuan Province

LIU Shukun1,ZHOU Yalin2,LIANG Jin1,YANG Lian1,YUAN Yanping1 1 Chengdu University of TCM,Chengdu 611137,Sichuan Province,China. 2 Changshou District Center for Disease Control and Prevention,Chongqing 401220,China.


Abstract Objective To predict the trend of notifiable disease in Sichuan province through applying the Grey Model ( 1,1) ,and to predict the incidence rates from 2015 to 2017 via extrapolation method based on those diseases of which the accuracy reach level one or level two. Methods The incidence rates of 34 kinds of notifiable disease which were reported completely from 2005 to 2014 were collected. First,the GM ( 1,1) was built up by using MATLAB 6. 1. Then, the Posteriori Error Estimates method was used to test the accuracy of model. For those infectious disease models meeting the accuracy requirement,the paper predicted the incidence rates from 2015 to 2017. Finally,the actual and expected morbidity of notifiable diseases in Sichuan province were compared. Results There were eighteen kinds of infectious disease model up to level one and two in accuracy. After the extrapolation,the study found that except the upward trend of AIDS,HIV and hepatitis C as well as hepatitis E,the rest 14 kinds of infectious disease showed a downward trend. The trend of actual and expected morbidity of notifiable diseases, which focused on the leading infectious diseases including phthisis,HIV,virus hepatitis,etc., in Sichuan province in 2015 was well consistent. Conclusion The Grey Model ( 1,1) was applicable for short-term forecast of diseases that had stable epidemic and for analysis on data of small sample and less information. The prediction accuracy will be improved if the researchers could preprocess the modeling sequence and combine the qualitative analysis method,providing theoretical references for the countermeasures-making of infectious diseases control and prevention. 

Key words notifiable disease; Grey Model ( GM) ; prediction; incidence


点击下载文献:灰色系统模型在四川省法定传染病发病率趋势预测中的应用.pdf